

methane hydrate settings off North Carolina and hydrate-dependent habitats

Cindy Lee Van Dover

Harvey W Smith Professor of Biological Oceanography
Duke University Marine Laboratory

A Presentation to the Subcommittee on Offshore Energy Exploration

15 April 2009

Raleigh NC

A Presentation to the Subcommittee on Offshore Energy Exploration 15 April 2009; Raleigh NC

Outline

- Deep Sea Overview
- Methane Hydrate Overview
- Blake Ridge Methane Hydrate Province
- Resource Estimates
- Methane Dynamics and Concentration
- Blake Ridge Depression and Sediment Wave Field
- Blake Ridge Diapir (BRD) and Subsurface Structure
- BRD Seep
 - Chemosynthesis
 - Sulfate Reduction

Brief Introduction to the Deep Sea

Sediment

- low sedimentation rates
- low organic carbon content in sediment

Pressure

• 1 atm every 10 m water depth (1500 m = 150 atm)

Temperature

• 1 to 2 °C (just above freezing)

Fauna

- low biomass
- low abundance
- high biodiversity

A Presentation to the Subcommittee on Offshore Energy Exploration 15 April 2009; Raleigh NC

another kind of seabed environment: global distribution of methane hydrates

http://walrus.wr.usgs.gov/globalhydrate/poster.pdf

Thomas D. Lorenson and Keith A. Kvenvolden

white circles: sampled hydrate black circles: inferred hydrate

QUICK FACTS

- methane hydrate: water lattice (H2O) and swamp gas (CH4)
- methane composes >99% of the hydrocarbon gas (BR)
- stable at low temperature and pressure
- occurs in deep-sediments, polar permafrost, deep lakes
- clathrate: water lattice with trapped gas molecules

"ice that burns"

A Presentation to the Subcommittee on Offshore Energy Exploration 15 April 2009; Raleigh NC

gas hydrates: largest reservoir of organic carbon on the planet

Organic carbon in the earth

after Kvenvolden

http://gsc.nrcan.gc.ca/gashydrates/canada/index_e.php

Faugères et al. (1993)

www-odp.tamu.edu/.../ 164_SR/chap_35/ch35_f1.htm

The Blake Ridge Contourite

- passive continental margin
- •interaction of Gulf Stream and WBUC*
- depositional feature (2900 m max)
- Miocene and younger (< 23 Ma)
- Western Boundary Under Current*
 - erodes sediment E flank
 - deposits sediment W flank

Blake Ridge Basic Specs

- 2000-4800 m
- ~500 km length
- BSR reported in 1970

asterisk: Blake Ridge Diapir

BSR = contrast in sound velocity created by hydrate-cemented zone above water-saturated sediments with trapped gas

• BSR encloses 55,000 km²; high amplitude BSR: 26,000 km²

What is a bottom-simulating reflector (BSR)?

Paull et al. 1996; Holbrook et al. 1996; Borowski 2004

• Gas hydrates between 190 and 450 m in sediment column average sediment pore space occupied by methane gas hydrates: 5.4%

What is the methane source? microbial methanogenesis (biogenic methane)

Basic Blake Ridge Methane Statistics

from Borowski 2004

- 1. methane hydrate: 67-406 Gt or 9-53 Gt methane
- 2. methane gas (below BSR): 2.6 to 27 Gt methane
- 3. current methane losses from system:
 - point source seeps
 - diffusion and consumption at sulfate-methane interface by anaerobic methane oxidation (2.8 x 10⁸ mol yr⁻¹)
- 4. methane enters gas hydrate stability zone at rate of 1.3 x 109 mol yr⁻¹
- 5. ⇒methane trapping efficiency ~85%
- 6. gas hydrate in Blake Ridge system has accumulated over ≥55 MY

methane movement and concentration mechanisms

BGHS: base of gas hydrate stability zone

blake ridge depression and sediment wave fields

- waves: 5-10 km long, 1-3 km separation
 75-50 m height
- erosional and depositional regime
- weak or absent BSR; not due to structural collapse
- escape of o.6 Gt methane; timing and rate unknown
 12% of present day atmospheric methane

sustained, morphologically driven advection through erosional features

blake ridge diapir

focused advection

Hornbach et al. 2005

Blake Ridge Diapir Subsurface Structure

3.5 kHz echo sounder 24 lines, 6 km long 40 m spacing

- "holes" in layers = potential conduits i.e., seep sites
- holes are associated with faults

methane-hydrate outcrop

blake ridge seep setting

Van Dover et al. 2003

authigenic carbonate outcrop

PHOTOSYNTHESIS

CHEMOSYNTHESIS HYDROTHERMAL VENT

CHEMOSYNTHESIS METHANE HYDRATE SEEP

V. Orphan

microbial consumption of methane in porewaters

www.amethox.com/ principal.htm

sulfate-dependent methane oxidation

PROPOSED REACTION (of several possible)

$$CH4 + 3H2O -> HCO3 - + H + + 4H2$$

$$4H2 + 5O4^{2-} -> 5^{2-} + 4H2O$$

TOTAL REACTION:

$$CH_4 + SO_4^{2-} -> HCO_{3^-} + HS_- + H_2O_{3^-}$$

dominant megafauna

Bathymodiolus heckerae mussels

Vesicomyidae n. gen. n. sp. clams

Sarsiaster greigi cake urchin

other megafauna

brisingid seastar

Syringammina xenophyophore (Protozoa)

"tubeworms"

pogonophorans

or

vestimentiferans?

Alvinocaris muricola

A. methanophila

Vesicomyicola trifurcatus

A Presentation to the Subcommittee on Offshore Energy Exploration 15 April 2009; Raleigh NC

Bathymodiolus heckerae

gill tissue

"dual" symbiosis: methanotrophs and thiotrophs

Van Dover et al. 2003

Bathymodiolus heckerae

quantitative studies of biodiversity in mussel beds

Heyl et al. 2007

sulfide mMsulfate mM

conservation challenges

- distribution and variety of chemosynthetic habitats in the region is unknown
- seep fauna likely to have very slow growth rates, extended longevity
- numerous rare and undescribed species
- no knowledge of location of brood stocks or population connectivity
- mitigation, remediation, restoration strategies difficult to imagine or implement